Metric Dimension of Some Generalized Families of Toeplitz Graphs

نویسندگان

چکیده

The metric dimension of a graph G is the selection minimum possible number vertices such that each vertex id="M2"> distinctively defined by its vector distances to set selected vertices. It was proved problem determining NP-hard. In this paper, Toeplitz graphs with two and three generators discussed exact values are found. Also, conjectures about given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the metric dimension of some families of graphs

The concept of (minimum) resolving set has proved to be useful and/or related to a variety of fields such as Chemistry [3,6], Robotic Navigation [5,8] and Combinatorial Search and Optimization [7]. This work is devoted to evaluating the so-called metric dimension of a finite connected graph, i.e., the minimum cardinality of a resolving set, for a number of graph families, as long as to study it...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

Antimagicness of some families of generalized graphs

An edge labeling of a graph G = (V,E) is a bijection from the set of edges to the set of integers {1, 2, . . . , |E|}. The weight of a vertex v is the sum of the labels of all the edges incident with v. If the vertex weights are all distinct then we say that the labeling is vertex-antimagic, or simply, antimagic. A graph that admits an antimagic labeling is called an antimagic graph. In this pa...

متن کامل

the metric dimension and girth of graphs

a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...

متن کامل

On the Metric Dimension of Generalized Petersen Graphs

A family of connected graphs G is said to be a family with constant metric dimension if its metric dimension is finite and does not depend upon the choice of G in G. In this paper, we study the metric dimension of the generalized Petersen graphs P (n, m) for n = 2m + 1 and m ≥ 1 and give partial answer of the question raised in [9]: Is P (n, m) for n ≥ 7 and 3 ≤ m ≤ bn−1 2 c, a family of graphs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2022

ISSN: ['1026-7077', '1563-5147', '1024-123X']

DOI: https://doi.org/10.1155/2022/9155291